Rationally re-designed mutation of NAD-independent l-lactate dehydrogenase: high optical resolution of racemic mandelic acid by the engineered Escherichia coli

نویسندگان

  • Tianyi Jiang
  • Chao Gao
  • Peipei Dou
  • Cuiqing Ma
  • Jian Kong
  • Ping Xu
چکیده

BACKGROUND NAD-independent L-lactate dehydrogenase (L-iLDH) from Pseudomonas stutzeri SDM can potentially be used for the kinetic resolution of small aliphatic 2-hydroxycarboxylic acids. However, this enzyme showed rather low activity towards aromatic 2-hydroxycarboxylic acids. RESULTS Val-108 of L-iLDH was changed to Ala by rationally site-directed mutagenesis. The L-iLDH mutant exhibited much higher activity than wide-type L-iLDH towards L-mandelate, an aromatic 2-hydroxycarboxylic acid. Using the engineered Escherichia coli expressing the mutant L-iLDH as a biocatalyst, 40 g·L(-1) of DL-mandelic acid was converted to 20.1 g·L(-1) of D-mandelic acid (enantiomeric purity higher than 99.5%) and 19.3 g·L(-1) of benzoylformic acid. CONCLUSIONS A new biocatalyst with high catalytic efficiency toward an unnatural substrate was constructed by rationally re-design mutagenesis. Two building block intermediates (optically pure D-mandelic acid and benzoylformic acid) were efficiently produced by the one-pot biotransformation system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly stereoselective biosynthesis of (R)-α-hydroxy carboxylic acids through rationally re-designed mutation of d-lactate dehydrogenase

An NAD-dependent D-lactate dehydrogenase (D-nLDH) of Lactobacillus bulgaricus ATCC 11842 was rationally re-designed for asymmetric reduction of a homologous series of α-keto carboxylic acids such as phenylpyruvic acid (PPA), α-ketobutyric acid, α-ketovaleric acid, β-hydroxypyruvate. Compared with wild-type D-nLDH, the Y52L mutant D-nLDH showed elevated activities toward unnatural substrates esp...

متن کامل

Efficient synthesis of L-lactic acid from glycerol by metabolically engineered Escherichia coli

BACKGROUND Due to its abundance and low-price, glycerol has become an attractive carbon source for the industrial production of value-added fuels and chemicals. This work reports the engineering of E. coli for the efficient conversion of glycerol into L-lactic acid (L-lactate). RESULTS Escherichia coli strains have previously been metabolically engineered for the microaerobic production of D-...

متن کامل

Reconstruction of lactate utilization system in Pseudomonas putida KT2440: a novel biocatalyst for l-2-hydroxy-carboxylate production

As an important method for building blocks synthesis, whole cell biocatalysis is hindered by some shortcomings such as unpredictability of reactions, utilization of opportunistic pathogen, and side reactions. Due to its biological and extensively studied genetic background, Pseudomonas putida KT2440 is viewed as a promising host for construction of efficient biocatalysts. After analysis and rec...

متن کامل

Production of optically pure D-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110.

The resistance of polylactide to biodegradation and the physical properties of this polymer can be controlled by adjusting the ratio of L-lactic acid to D-lactic acid. Although the largest demand is for the L enantiomer, substantial amounts of both enantiomers are required for bioplastics. We constructed derivatives of Escherichia coli W3110 (prototrophic) as new biocatalysts for the production...

متن کامل

Enantioselective Biosynthesis of l-Phenyllactic Acid by Whole Cells of Recombinant Escherichia coli.

BACKGROUND l-Phenyllactic acid (l-PLA)-a valuable building block in the pharmaceutical and chemical industry-has recently emerged as an important monomer in the composition of the novel degradable biocompatible material of polyphenyllactic acid. However, both normally chemically synthesized and naturally occurring phenyllactic acid are racemic, and the product yields of reported l-PLA synthesis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2012